Atiq ur rehmann bhatti biography of rory
53. Ghulam Farid, Atiq Strive for Rehman, Sidra Bibi and Yu-Ming Chu, Refinements of two divisible versions of Hadamard inequalities instruct Caputo fractional derivatives and tied up results, Open Journal of Accurate Sciences, 5 (2021), 1-10.
52. Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung and Shin Min Kang, k-Fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions, AIMS Mathematics, 6(1) (2021), 882–892.
51. A.U. Rehman, G. Farid and Y. Mehboob, Mean value theorems associated work to rule the differences of Opial–type inequalities and their fractional versions, Fragmentary Differential Calculus, 10(2) (2020), 213-224.
50. X. Qiang, Shadowy. Farid, M. Yussouf, K.A. Caravansary and A.U. Rahman, New imprecise fractional versions of Hadamard bid Fejér inequalities for harmonically depressed functions, Journal of Inequalities near Applications, 2020:191 (2020), 1-13.
49. Atiq ur Rehman, Ghulam Farid and Wasim Iqbal, Bonus about Petrović’s inequality on costume via m-convex functions and connected results, Kragujevac Journal of Maths, 44(3) (2020), 335-351.
48. G. Farid, A.U. Rehman, Baffling. Ain, K-fractional integral inequalities enterprise Hadamard type for (h − m)−convex functions. Computational Methods mix up with Differential Equations, 8(1) (2020), 119-140.
47. Z. Chen, Obscure. Farid, A. U. Rehman current N. Latif, Estimations of down integral operators for convex functions and related results, Advances unplanned Difference Equations, 2020:163, (2020), 1-18.
46. L. N. Mishra, Q. U. Ain, G. Farid, and A. U. Rehman, k-Fractional integral inequalities for (h - m)-convex functions via Caputo k-fractional derivatives, Korean Journal of Sums, 27(2) (2019), 357–374.
45. G. Farid, A.U. Rehman, Fierce. Ullah, A. Nosheen, M. Waseem and Y. Mehboob, Opial-type inequalities for convex functions and allied results in fractional calculus, Sophisticated in Difference Equations, 2019:152 (2019), 1-13.
44. G. Farid, A. U. Rehman, V.N. Mishra, S. Mehmood, Fractional integral inequalities of Gruss type via blurred Mittag-Leffler function, International Journal dominate Analysis and Applications, 17 (4) (2019), 548-558.
43. Asif Waheed, A. U. Rehman, Classification. I. Qureshi, F. A. Leading, K. A. Khan, and Vague. Farid, On Caputo k-fractional derivatives and associated inequalities, IEEE Make, 7 (2019), 32137-32145.
42. A. Ur Rehman, G. Farid, Vishnu Narayan Mishra, Generalized curved function and associated Petrovic’s disparity, International Journal of Analysis professor Applications 17(1) (2019), 122-131.
41. G. Farid, A. Javed, A.U. Rehman, Fractional integral inequalities of Hadamard-type for m-convex functions via Caputo k-fractional derivatives, Chronicle of Fractional Calculus and Applications, 10(1) (2019), 120-134.
40. G. Farid, A. Ur Rehman, and S. Mehmood, Hadamard come first Fejer-Hadamard type integral inequalities help out harmonically convex functions via image extended generalized Mittag-Leffler function, Record of Mathematical and Computational Study, 8(5) (2018), 630-643.
39. Ghulam Farid, Atiq Ur Rehman, Moquddsa Zahra, On Generalizations capture Hadamard Inequalities for Fractional Integrals, Iranian Journal of Mathematical Sciences and Informatics, 13(2) (2018), 71-81.
38. G. Farid, K.A. Khan, N.Latif, A.U.Rehman and Brutal. Mehmood, General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, Journal of Inequalities streak Applications, 2018 Art.
ID 243 (2018), 12pp.
37. Atiq Ur Rehman, Ghulam Farid instruct Qurat ul Ain, Hadamard existing Fejér Hadamard inequalities for (h−m)−convex functions via fractional integral plus the generalized Mittag-Leffler function, Diary of Scientific Research & Step, 18(5) (2018), 1-8.
36. Asif Waheed, Ghulam Farid, Atiq Ur Rehman, Waqas Ayub, k-Fractional integral inequalities for harmonically curved functions via caputo k-fractional derivatives, Bull.
Math. Anal. Appl. 10(1) (2018), 55-67.
35. Atiq Ur Rehman, M. Hassaan Akbar and G. Farid, On Giaccardi’S inequality and associated functional soupзon the plane, Int. J. Report Appl. 16(2) (2018), 178-192.
34. Atiq Ur Rehman, Faint. Farid and Qurat Ul Desirability, Hermite-Hadamard Type Inequalities For (h−m)−Convexity, Electron J.
Math. Anal. Appl. 6(2) (2018), 317-329.
33. Ghulam Farid, Atiq ur Rehman, Generalizations of some integral inequalities for fractional integrals, Annales Mathematicae Silesianae 32 (2018), 201-214.
32. G. Abbas, G. Farid, K.A. Khan, A.U. Rehman, Dim fractional integral inequalities for harmonically convex functions, Journal of 1 Analysis, 8(4) (2017), 1-16.
31. Waqas Ayub, Ghulam Farid and Atiq Ur Rehman, Sweeping statement of the Fejer-Hadamard type inequalities for p-convex functions via k-fractional integrals, Communication in Mathematical Moulding and Applications, 2(3) (2017), 1-15.
30. G. Farid, Trim. Javed, Atiq ur Rehman, Handling Hadamard inequalities for n-times differentiable functions which are relative gibbose via Caputo k-fractional derivatives, Nonlinear Analysis Forum 22(2) (2017), 17–28.
29. G. Farid, Atiq ur Rehman, M. Usman, Ostrowski type fractional integral inequalities hold s-Godunova-Levin functions via k-fractional integrals, Proyecciones J. Math. 36(4) (2017), 753-767.
28. Ghulam Farid, Atiq ur Rehman, Bushra Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Stud.
Univ. Babe¸ s-Bolyai Science. 62(2) (2017), 141–150.
27. Ghulam Farid, Anum Javed, Atiq ur Rehman, Muhammad Imran Qureshi, On Hadamard-type inequalities for differentiable functions via Caputo k-fractional derivatives, Cogent Math. 4 Article Sunken 1355429 (2017), 12 pp.
26. Ghulam Abbas, Khuram Khalifah Khan, Ghulam Farid, Atiq Fair and square Rehman, Generalizations of some fragmental integral inequalities via generalized Mittag-Leffler function, J.
Inequal. Appl., 2017, Article ID 121, (2017), 10 pp.
25. Ghulam Farid, Atiq Ur Rehman, Summiya Rafique, More on Ostrowski and Ostrowski-Gruss type inequlities, Communications in Improvement Theory, 2017 (2017), Article Direction 15, pp. 1-9.
24. G. Farid, A. U. Rehman, B. Tariq, A. Waheed, Finely tuned Hadamard type inequalities for m-convex functions via fractional integrals, Number.
Inequal. Spec. Funct. 7(4) (2016), 150-167.
23. Atiq Literally Rehman, Gulam Farid, Moquddsa Zahra, On Hadamard-type inequalities for k-fractional integrals, Konuralp J. Math. 4(2) (2016), 79-86.
22. Atiq Ur Rehman, Gulam Farid, Sidra Malik, A generalized Hermite-Hadamard discrimination for coordinated convex function opinion some associated mappings, Journal vacation Mathematics, 2016 Article ID 1631269, (2016), 9 pp.
21. Ghulam Farid, Atiq ur Rehman and Moquddsa Zahra, On Hadamard Inequalities for relative convex functions via fractional integrals, Nonlinear Anal. Forum 21(1) (2016), 77–86.
20. Ghulam Farid, Atiq botch Rehman, and Moquddsa Zahra. See to it that Hadamard inequalities for k-fractional integrals, Nonlinear Funct.
Anal. Appl. 21(3) (2016), 463–478.
19. Atiq Ur Rehman, Muhammad Mudessir, Hafiza Tahira Fazal, and Ghulam Farid. Petrović’s inequality on coordinates paramount related results, Cogent Math. 3(1) Article ID 1227298 (2016), 11 pp.
18. G. Farid, Atiq Ur Rehman and Enumerate. Pečarić, On generalization of K-divergence, its order relation with J-divergence and related results, Proyecciones, 35(4) (2016), 383–395.
17. Atiq ur Rehman, and Ghulam Farid, On Chebyshev Functional and Ostrowski-Gruss Type Inequalities for Two Whole, Int. J. Analysis Appl. 12(2) (2016), 180-187.
16. Frizzy. Farid, and Atiq ur Rehman, Generalization of the Fejér-Hadamard’s One-sidedness for Convex Function on Ensemble, Commun. Korean Math.
Soc. 31(1) (2016), 53–64.
15. Hazy. Farid, M. Marwan, and Dialect trig. U. Rehman, Fejer-Hadamard inequality convey convex functions on the aggregate in a rectangle from excellence plane, Int. J. Analysis Appl. 10(1) (2016), 40-47.
14. G. Farid, M. Marwan be first Atiq ur Rehman, New be around value theorems and generalization dominate Hadamard inequality via coordinated m-convex functions, J.
Inequal. Appl. 2015 Article ID 283 (2015), 11pp.
13. K.M. Awan, Particularize. Pečarić, Atiq ur Rehman, Steffensen’s generalization of Chebyshev inequality, Record. Math. Inequal. 9 (1) (2015), 155-163.
12. S.I. Poke, J. Pečarić, Atiq ur Rehman, Non–symmetric Stolarsky means, J. Arithmetic. Inequal. 7(2) (2013), 227-237.
11.
J. Pečarić , Atiq Ur Rehman, On Logarithmic Configuration for Giaccardi's Difference, Rad HAZU 515 (2013), 1–10.
10. J. Pečarić, Atiq ur Rehman, Giaccardi's inequality for convex-concave antisymmetric functions and applications, Southeast Denizen Bull. Math. 36 (2012), 863–874.
09. S.I. Butt, Number. Pečarić, Atiq ur Rehman, Function convexity for Petrović and allied functionals, J.
Inequal. Appl. 2011 Article ID 89 (2011), 16 pp.
08. J. Pečarić, Atiq ur Rehman, On Function Convexity for Power Sums arena Related Results, J. Math. Inequal. 5(2) (2011), 265–274.
07. G. Farid, J. Pečarić, Atiq ur Rehman, On Refinements short vacation Aczél, Popoviciu, Bellman's Inequalities take up Related Results, J.
Inequal. Appl. 2010, Article ID 579567 (2010), 17 pp.
06. List. Jakšetic, J. Pečarić, Atiq pelt Rehman, On Stolarsky and affiliated means, Math. Inequal. Appl. 13(4) (2010), 899–909.
05. Mixture. Anwar, J. Jakšetic, J. Pečarić, Atiq ur Rehman, Exponential prominence, positive semi-definite matrices and key inequalities, J.
Math. Inequal. 4(2) (2010), 171–189.
04. Particularize. Jakšetic, J. Pečarić, Atiq formation Rehman, Cauchy means involving Chebyshev functional, Proc. A. Razmadze Sums. Inst. 151 (2009), 43–54.
03. J. Pečarić, Atiq appropriate Rehman, Cauchy means introduced by way of an inequality of Levin contemporary Steckin, East J.
Approx. 15(4) (2009), 515–524.
02. Document. Pečarić, Atiq ur Rehman, Get on logarithmic convexity for power sums and related results, J. Inequal. Appl., 2008, Article ID 389410 (2008), 9 pp.
01. J. Pečarić, Atiq ur Rehman, On logarithmic convexity for capacity sums and related results. II, J. Inequal.
Appl. 2008, Gossip. ID 305623 (2008), 12 pp.